Titre

NEw Methods for BIological Control of the Arboviruses

Porteur

Pierre-Alexandre Bliman

Budget

15 k €

The present project is concerned with new strategies to control the spread of established diseases (such as e.g. dengue, chikungunya and Zika) and potentially emerging or reemerging diseases (e.g. Mayaro, Oropouche and Yellow fever) transmitted by mosquitoes Aedes aegypti and Aedes albopictus. Due especially to the widespread resistance to the insecticides traditionally used to control the vectors, the use of sterile insect (SIT – Sterile Insect Technique), of transgenic mosquitoes (RIDL – Release of Insect carrying Dominant Lethal gene) and/or of mosquitoes infected with the bacterium Wolbachia (which drastically reduces their vector competence), are considered as viable control alternatives. These biological control techniques envisage either the elimination of the vector in a locality (SIT or RIDL), or its local substitution by a population refractory to the arboviruses transmitted by these species (Wolbachia). How to achieve the releases on a large scale in order to maximize their effect is still a source of some central questions that we aim to study here. We will focus more specifically on the issues related to spatial spreading of the treatment, on observer techniques for estimating the number of mosquitoes during the releases, and on optimal and non-optimal control approaches. An important modeling effort will also be conducted on some key issues: we will assess the effects of the chemical and mechanical control methods on the success of the above techniques; the consequences of inter and intra-species competition in larval phase (an important issue so far overlooked); the questions raised by the use of self-propagating genetic mechanisms and the definition of associated efficacy measures; and develop genome scale model of Wolbachia in order to identify in the parasite-host relationship, crucial biological factors that could dynamically affect the dissemination.