Prépublications
- [A29] ϕ-FD : A well-conditioned finite difference method inspired by ϕ-FEM for general geometries on elliptic PDEs M. Duprez, V. Lleras, A. Lozinski, V. Vigon and K. Vuillemot, preprint (hal).
- [A28] Sterile Insect Technique in a Two-Patch Model: Effects of Migration Rates on Optimal Control Strategies for Single-Patch Releases Y. Dumont, M. Duprez and Y.Privat. Soumis, preprint (hal).
- [A27] phi-FEM-FNO: a new approach to train a Neural Operator as a fast PDE solver for variable geometries M. Duprez, V. Lleras, A. Lozinski, V. Vigon and K. Vuillemot. Soumis, preprint (hal).
- [A26] Automatic mesh refinement for soft tissue M. Duprez, F. Chouly, P.-Y. Rohan, S. P. A. Bordas, M. Bucki and F. Chouly. Soumis, preprint (hal), codes.
Articles scientifiques publiés
2024
- [A25] A Zero-Shot Reinforcement Learning Strategy for Autonomous Guidewire NavigationV. Scarponi, M. Duprez, F. Nageotte, S. Cotin. International Journal of Computer Assisted Radiology and Surgery, (2024): 1-8, preprint (hal), pdf (revue).
- [A24] Modeling the impact of rainfall and temperature on sterile insect control strategies in a Tropical environment Y. Dumont and M. Duprez. Journal of Biological Systems Vol. 32 (2024), preprint (hal), codes (github), pdf (revue)
2023
- [A23] An Immersed Boundary Method by ϕ-FEM approach to solve the heat equation M. Duprez, V. Lleras, A. Lozinski and K. Vuillemot. Comptes Rendus. Mathématique, Volume 361 (2023) p. 1699-1710, preprint (hal), codes (github), pdf (revue)
- [A22] Delayed closed-loop neurostimulation for the treatment of pathological brain rhythms in mental disorders. M. Duprez, A. Hutt and T. Wahl. Front. Neurosci. Sec. Neural Technology Vol. 17 (2023), preprint (hal), pdf (revue)
- [A21] Remarks on the controllability of parabolic systems with non-diagonalizable diffusion matrix M. Duprez, D. Souza and M. Gonzalez-Burgos. Discrete and Continuous Dynamical Systems – Series S
Vol. 16, No. 6, June 2023, pp. 1346-1382, preprint, pdf (revue).
- [A20] φ-FEM: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations M. Duprez, V. Lleras and A. Lozinski. ESAIM: M2AN 57 (2023), 1111-1142, preprint (hal), pdf (revue), codes (github)
- [A19] A new ϕ-FEM approach for problems with natural boundary conditions M. Duprez, V. Lleras and A. Lozinski. Numer. Methods Partial Differ. Eq. 39 (2023) n°1, 281-303., preprint (hal), pdf (revue), codes (github).
2022
- [A18] Optimal control strategies for the sterile mosquitoes technique L. Almeida, M. Duprez, Y. Privat and N. Vauchelet. J. Differential Equations 311 (2022), 229–266, preprint (hal), pdf (revue), codes (github).
- [A17] Bilinear local controllability to the trajectories of the Fokker-Planck equation with a localized control M. Duprez and P. Lissy. Annales de l’Institut Fourier, Tome 72 (2022) no. 4, pp. 1621-1659. , preprint (hal), pdf (revue).
2021
- [A16] Optimization of spatial control strategies for population replacement, application to Wolbachia M. Duprez, R. Hélie, Y. Privat and N. Vauchelet. ESAIM Control Optim. Calc. Var. 27 (2021), Paper No. 74, 30 pp. , preprint (hal), pdf (revue).
- [A15] Optimal immunity control by social distancing for the SIR epidemic model P.-A. Bliman, M. Duprez, Y. Privat and N. Vauchelet. Journal of Optimization Theory and Applications 189, pages 408–436 (2021), preprint (hal), pdf (revue), codes (github).
- [A14] How Best Can Finite-Time Social Distancing Reduce Epidemic Final Size? P.-A. Bliman and M. Duprez. Journal of Theoretical Biology 511 (2021), preprint (hal), pdf (revue), codes (github).
2020
- [A13] phi-FEM: a finite element method on domains defined by level-sets M. Duprez and A. Lozinski. SIAM J. Numer. Anal. 58 (2020), no. 2, pp. 1008-1028, preprint (hal), pdf (revue), codes (github).
- [A12] Minimal time for the continuity equation controlled by a localized perturbation of the velocity vector field M. Duprez, M. Morancey and F. Rossi. J. Differential Equations 269 (2020), no. 1, pp. 82-124, preprint (hal), pdf (revue), codes (github).
- [A11] Control of the Grushin equation: non-rectangular control region and minimal time M. Duprez and A. Koenig. ESAIM: COCV, 26 (2020) 3 , preprint (hal), pdf (revue).
- [A10] Quantifying discretization errors for soft-tissue simulation in computer assisted surgery: a preliminary study M. Duprez, S. Bordas, M. Bucki, P. Bui, F. Chouly, V. Lleras, C. Lobos, A. Lozinski, P-Y Rohan and S. Tomar. Appl. Math. Model. 77 (2020), part 1, pp. 709-723, preprint (hal), pdf (revue), codes (github).
2019
- [A9] Finite element method with local damage of the mesh M. Duprez, A. Lozinski and V. Lleras. ESAIM Math. Model. Numer. Anal. 53 (2019), no. 6, pp. 1871-1891, preprint (hal), pdf (revue), codes (github).
- [A8] Mosquito population control strategies for fighting against arboviruses L. Almeida, M. Duprez, Y. Privat and N. Vauchelet. Math. Biosci. Eng. 16 (2019), no. 6, pp. 6274-6297, preprint (hal), pdf (revue), codes (github).
- [A7] Approximate and exact controllability of the continuity equation with a localized vector field M. Duprez, M. Morancey and F. Rossi. SIAM J. Control Optim. 57 (2019), no. 2, pp. 1284-1311, preprint (hal), pdf (revue).
2018
- [A6] Perturbations of controlled systems M. Duprez and G. Olive. Math. Control Relat. Fields 8 (2018), no. 2, pp. 397-410, preprint (hal), pdf (revue).
- [A5] Positive and negative results on the internal controllability of parabolic equations coupled by zero and first order terms M. Duprez and P. Lissy. J. Evol. Equ. 18 (2018), no. 2, pp. 659-680, preprint (hal), pdf (revue).
2017
- [A4] Criterion of positivity for semilinear problems with applications in biology M. Duprez and A. Perasso. Positivity 21 (2017), no. 4, pp. 1383-1392, preprint (hal), pdf (revue).
- [A3] Controllability of a 2 X 2 parabolic system by one force with space-dependent coupling term of order one M. Duprez. ESAIM Control Optim. Calc. Var. 23 (2017), no. 4, pp. 1473-1498, preprint (hal), pdf (revue).
2016
- [A2] Indirect controllability of some linear parabolic systems of m equations with m – 1 controls involving coupling terms of zero or first order M. Duprez and P. Lissy. J. Math. Pures Appl. (9) 106 (2016), no. 5, pp. 905-934, preprint (hal), pdf (revue).
- [A1] Partial null controllability of parabolic linear systems F. Ammar-Khodja, F. Chouly and M. Duprez. Math. Control Relat. Fields 6 (2016), no. 2, pp. 185-216, préprint (hal), pdf (revue), codes (github).
Chapitre de livre
- [C1] Phi-FEM: an efficient simulation tool using simple meshes for problems in structure mechanics and heat transfer S. Cotin, M. Duprez, V. Lleras, A. Lozinski, K. Vuillemot. Partition of Unity Methods (Wiley Series in Computational Mechanics), preprint (hal), codes (github), pdf (revue).
Proceedings
- [P4] Autonomous Guidewire Navigation in Dynamic Environments V. Scarponi, F. Lecomte , M. Duprez, F. Nageotte , S. Cotin. International Conference on Intelligent Robots and Systems, Abu Dhabi, United Arab Emirates, 2024 , preprint (hal).
- [P3] Minimal cost-time strategies for mosquito population replacement L. Almeida, J. Bellver Arnau, M. Duprez, and Y. Privat. Radon book series, 2020 , preprint (hal).
- [P2] Minimal time problem for discrete crowd models with a localized vector field M. Duprez, M. Morancey and F. Rossi. 57th IEEE Conference on Decision and Control, Miami Beach, FL, USA, December 17-19, 2018 , preprint (hal).
- [P1] Controllability and optimal control of the transport equation with a localized vector field M. Duprez, F. Rossi and M. Morancey. 25th Mediterranean Conference on Control and Automation (MED), Malta, July 3-6, 2017, preprint (hal).
Poster
9-13 nov. 2015
Conférence : « Contrôlabilité des EDP et applications »
Titre : « Indirect controllability of some linear parabolic systems of two equations with one control involving coupling terms of first order » pdf CIRM, Marseille
Thèse de doctorat (26 nov. 2015)
2015
Contrôlabilité de quelques systèmes gouvernés par des équations paraboliques
Manuscrit : pdf
Exposé de soutenance : pdf
Mémoires de master
2011
Master histoire des sciences
« Les Sphériques de Ménélaüs »
Manuscrit : pdf
2012
Master mathématiques approfondies, spécialité edp
« Contrôlabilité approchée, optimisation et convergence numérique des équations de diffusions linéaires »
Manuscrit : pdf